email:
liangf*
phone: 217. 333.6017
fax:
217.244.7190
office:
116A Illini Hall
725
S. Wright St.
Champaign, IL 61820
|
+
more faculty
in the statistics department.
+
to statistics
department main page.
*AT illinois DOT edu
|
|
|
Associate Professor of Statistics
Ph.D. in Statistics, Yale University, 2002
Website
Research Interests
- Bayesian
methods
- Decision
theory
- Information
theory
- Minimum
description length principle
- Data mining
Selected Publications
-
B. Li, F. Liang, J. Hu, and X. He (2012)
Reno: Regularized Nonparametric Analysis of Protein Lysate Array Data.
Bioinformatics. In press.
-
E. I. George, F. Liang and X. Xu (2012)
From Minimax Shrinkage Estimation to Minimax Shrinkage Prediction.
Statistical Science 27: 82-94.
-
F. Liang (2012) Comment on Article by Sancetta. Bayesian Analysis 7:45-46.
-
Y. Yang, X. Chu, F. Liang, and T. Huang (2012)
Pairwise Exemplar Clustering.
In Proceedings of the 26th Conference on Artificial Intelligence, Toronto, Canada.
-
J. Xu and F. Liang (2010). Bayesian co-segmentation of multiple MR images.
Statistics and Its Interface, 3 513-521.
-
X. Xu and F. Liang (2010). Asymptotic minimax risk of predictive density
estimation for nonparametric regression. Bernoulli, 16(2) 543-560.
-
Gao J, Liang F, Fan W, Wang C, Sun Y, and Han J. (2010). On community
outliers and their ecient detection in information networks.
In Proceedings of the 16th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD), Washington, DC.
-
J. Chu, M. Clyde, and F. Liang (2009). Bayesian function estimation using
continuous wavelet dictionaries. Statistica Sinica, 19 1419-1438.
-
J. Gao, F. Liang, W. Fan, Y. Sun, and J. Han (2009). Bipartite Graph-based
Consensus Maximization among Supervised and Unsupervised Models.
In Proceedings of the 23rd Annual Conference on Neural Information Processing
Systems (NIPS), Vancouver, British Columbia, Canada.
-
F. Liang, R. Paulo, G. Molina, M. Clyde, and J. Berger (2008). Mixtures of
g-priors for Bayesian variable selection. J. Amer. Statist. Assoc., 103 410-423.
|